FREUD Applications of FIB

Invasive FIB Attacks and Countermeasures in Hardware Security Devices

Valery Ray
vray@partbeamsystech.com

FIB User Group, Washington DC, USA
Functional Reverse Engineering of Undocumented Devices

Extraction of functional codes, algorithms, data, and keys from secured hardware
Outline

- Targeted Devices and Applications
- Workflow of FIB “invasion”, challenges and tricks
- Signal extraction and injection
- Limitations of FIB instrumentation
- Countermeasures against FIB methods
Typical Targeted Devices:
µC in Distributed Security and Encryption Applications
Typical Targeted Devices: μC in Distributed Security and Encryption Applications
Workflow of FIB “Invasion”

- Navigation on undocumented secure devices
- Capturing layout and localizing nodes
- Bypassing protective shields
- Making contacts, extracting data, injecting signals
Navigation on Secure Devices

- Shields prevent direct navigation with optics
- Have to use sacrificial device to localize nodes
- Two steps of localization – coarse and precise
- Dual positioning: coordinates and local reference

3/8/2009

FIB User Group, Washington DC, USA
Coarse Localization on Sacrificial Device (s)

- Remove shield (wet chemistry or RIE)
- Scan device under Optical Microscope, stitch mosaic bitmap, locate nodes, define coordinates
- Establish references for coordinate conversion
- Convert bitmap coordinates to FIB stage position
Stitched mosaic gives bitmap layout of the device for coordinate navigation:

X / Y position of pixel is a bitmap coordinate!
References and Nodes in FIB

Use alignment references for coarse coordinate navigation on sacrificial device.

Then remove dielectric and capture precise position of node.
Navigation with Local Alignment

- Accuracy of FIB stage is limited – how to navigate on small-linewidth devices?

- Use coordinates for coarse navigation

- Use protective shield as your local reference!

- Try to make contacts in between shield lines, if impossible then bypass the shield
Bypassing Shield

- **Bypass entire shield**
 - Best for analog shields, works for some digital
 - Takes 30 to 60 min. of FIB time per device
 - Often need follow-up by non-FIB techniques
 - Shield can be removed to speed up further work

- **Bypass protective shield locally**
 - Works on analog and digital shields
 - On <200nm devices 2 – 3 shield lines may need bypassing to clear space for each contact
 - Takes 30 to 120 min. of FIB time per bypass
Disabling Shield

- Disable shield control circuitry
 - Requires detailed analysis of layout
 - Simulate “OK” shield on input of test circuitry
 - Cut output of charge pump – disable flash erase!
 - Cut “security interrupt” outputs, tie to “1” or “0”
Making “Large” Contacts: Direct Line Probing

On devices with spacious layout and line-width ≥ 350nm direct probing of internal nodes may be possible.

FIB Image of bus opening

© Christopher Tarnovsky
www.flylogic.net
Making Small Contacts: High Aspect Ratio Milling

- Straight Sputter
- Basic GAE
- Optimized GAE
Making Small Contacts: High Aspect Ratio Milling Throughput

All contacts are 5µm deep
Making Small Contacts: High Aspect Ratio Endpointing by Image

Spatial Filtering
- Filter Area

Integration Window

Filtered Endpoint
x2 S/N Improvement

Integrated Endpoint

Full Integration
Spatially Filtered
Making Small Contacts: High Aspect Ratio Endpointing by Image
Making Small Contacts: High Aspect Ratio Endpointing by Current

"Aftermarket" Sample Current Endpoint

Image Endpoint

40 fA p-p noise
Making Small Contacts: High Aspect Ratio Deposition
Making Contacts and Pads

HAR vias connecting to the nodes

Contact pads for probing

Clean overspray of metal depo
Data Extraction

- Connect to data acquisition equipment by microprobing
- Ensure proper buffering, internal nodes were not designed to drive 100pF cable
- Use ultra-low capacitance buffers for glitch recovery and jittered clock reconstruction
Filter, Align, and Convert to HEX Code
Disassemble, decompile, and make yourself at home 😊
Signal injection

- Injection of impulses into data bus can alter execution of embedded code

- Basic application: disruption of “End Of Loop” command in Answer To Reset (ATR) function of smartcard microcontrollers may cause extraction of data memory 😊

- Suitable injection buffers are not available from OEMs of pattern generators or otherwise, must DIY
Limitations of existing FIB technology

- Accuracy of navigation
 - Targeting nodes by only the coordinates on devices with linewidth < 200nm is unreliable on most FIBs

- Aspect ratio of contacts
 - Endpoint of milling on contacts with 20:1 depth/width may require “aftermarket” upgrades

- Linewidth (technology node) limitations
 - Making multiple deep contacts smaller than 250 nm is esoteric art, takes a very dedicated operator…
Countermeasures against FIB

- FIB attacks can be made uneconomical for casual FIB access:
 - Planarise devices and use small linewidth technology
 - Thick copper plane combined with active shields is difficult to cut
 - Use Liquid Crystal Polymer for encapsulation – hard to remove
 - Use combination of analog and digital shields: bypass is difficult
 - Introduce “position jitter” to shield layer on lithography step to prevent local referencing for navigation
 - Orient straight shield lines at 45 degrees angle to the layout
Summary

- FREUD by FIB methods can’t be prevented, but can be made too expensive for casual access.

- Basic countermeasures are relatively simple in manufacturing – planarisation of devices, more sophisticated active shields.

- Advanced countermeasures become viable as cost of IC manufacturing is reduced: active double-shielding, LCP encapsulation, 45 degrees shield-to-layout orientation and shield position “jittering”.